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The paper is devoted to developing mathematical models of the elastic oscillations of
a cylindrical shell with surface closing cracks. The respective forms of shell vibrations have
been chosen to represent various types of damage of the shell. In the case of dispersed and
single-surface damage, the transverse shell vibrations are simulated. The cycle of vibrations
is assumed to be subdivided into two parts, in one of them the damaged surface "bers are
compressed so closing the cracks and negating their in#uence. For the second part, the
cracks are open, so their in#uence is taken into account. The problem is solved in a piecewise
linear with di!erent frequencies and amplitudes at each vibrations cycle interval. The
vibration parameters are calculated by means of Relay's energy conservation method and
are represented by analytical expressions, the system being assumed to be conservative. The
functions determining the vibration process are decomposed by a Fourier analysis using the
averaged frequency, the coe$cients of the resulting series being obtained as analytical
expressions. Vibrodiagnostic functions, which enable the geometrical parameters of the
cracks to be determined depending on the geometry of the shell and type of damage, have
been plotted.

� 2002 Elsevier Science Ltd. All rights reserved.
1. INTRODUCTION

The experimental and theoretical methods of research of bending vibrations of construction
elements (beams) with a closing crack have been investigated in the papers [1}8]. It has
been mentioned that researches [8, 9] are devoted to the above said problem. The
vibrations of simply supported homogeneous beams with a crack, represented as an
equivalent spring with linear parameters connecting the two beam segments without
damages, are considered. The coe$cients of stress intensity factors for cylinder shells with
the open axial, circular and arbitrarily oriented cracks of "nite length are considered in the
handbook [10]
Papers [11}15] are devoted to the study of cylinder shells vibrations. The comparison

analysis of the results of determining the in#uence zone of the crack when considering the
problem of vibration of a supported beam has been performed in paper [11]. A problem of
shell vibrations with dispersed surface cracks has been considered in research [12]. The
ratio of amplitude of the second harmonic appearing during vibrations to the amplitude of
the "rst harmonic has been found. The ratio of the amplitude of shell vibrations with
a transverse crack to that of shell vibrations without crack for one of the possible variants of
the cracks in#uence zone on the parameters of the shell vibrations has been found. The shell
vibrations with a longitudinal crack have been discussed in studies [14, 15]. The
0022-460X/02/$35.00 � 2002 Elsevier Science Ltd. All rights reserved.
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experimental researches of the diagnostic parameters for beam vibrations have been stated
in references [16, 17].
Of note are the papers of Tsyfansky and Beresnevich [18] and Staszewski and Worden

[19] in which the damage detection in construction elements has been considered.
The purpose of this paper is the determination of the parameters of bending vibrations

(frequencies, amplitudes) of circular cylindrical shells without cracks, having transverse
isolated cracks and dispersed closing cracks. The results obtained have been used for the
diagnosis of cracks. The parameters which control diagnostic functions have been
proposed.

2. THE EQUATIONS AND SUPPOSITIONS

Equations of vibrations of the undamaged circular cylindrical shell are, from reference
[20],
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where the x-axis is directed along the symmetry axis of the median shell surface, the y-axis in
the circular direction, the z-axis along the interior normal of the median shell surface, u is
the component of transition along the x-axis, v is the component of transition along the
y-axis, w the component of transition along the z-axis, � is the Poisson coe$cient, a is the
radius of median shell surface, E is Young's modulus, h is the shell thickness, � is the density,
p
�
is the load intensity along the x-axis, p

�
the load intensity along the y-axis, q the

load intensity along the z-axis, t is the time of vibrations, ��"����"��/�x�#2 ��/
�x��y�#��/�y�.
When studying natural frequencies and forms of shell vibration in equations (1) p

�
"0,

p
�
"0, q"0 are assumed. The dimensionless variables �"x/a, �"y/a are introduced.
In case of axisymmetric vibrations the solution of equations (1) are:
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where n is the number of waves in a circular direction,� the natural frequency of vibrations,
�
�
the frequency parameter, m the number of half waves in the longitudinal direction

(Figure 1).
It is assumed, that two frequencies will appear in a full period of the vibration cycle,

�
�
which is appropriate to the case of closed cracks and �

�
in case of the opened cracks.

The full period of shell vibrations may be written as ¹"�/�
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The function describing the vibrations of the shell with a crack di!er in the parts of shell
vibrations with the opened and closed cracks. In case of the transverse vibrations it can be



Figure 1. Model of the shell.
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written, for example, as

w"�
A

�
sin

�x
l
cos �

�
t, 0)t)

�
2�

�

A
�
sin

�x
l
cos �

��t#
�

2�
�

!

�
2�

�
�,

�
2�

�

(t)
�

2�
�

#

�
�

�

A
�
sin

�x
l
cos �

� �t#
�
�

�

!

�
�

�
�,

�
2�

�

#

�
�

�

(t)¹
� . (3)

The variations in function (3) allow changes of vibration amplitudes and frequencies in
the vibrational process to be considered. The variation of this function has not been
considered in papers [12}15] to describe the vibrational process. The results of the paper
[11] have been used to evaluate function (3).
It is assumed, when the crack is open, the in#uence of the elastic energy of a strain in the

a!ected zone of shell material disappears. It is equivalent to removing material in this area.
The variants of removing the material are shown in Figure 2, which has the designations h

�
the depth of the crack, � the dimension of zone of crack in#uence along the shell. The
relation between �, h, h

�
obtained by the authors in reference [11] has the form:

�"2)5Pl(1!v)h
�
/2�aGh� where G is shear modulus and P the stretching force.

3. DETERMINATION OF PARAMETERS OF VIBRATIONS AND DIAGNOSTIC
FUNCTIONS

Relay's method is applied to calculate the vibration frequency of the shell. The vibration
frequencies are determined from the principles of energy conservation of vibrations.
K#P"const where K and P are, respectively, kinetic and potential energy of the shell
vibration. In the process of vibration, the shell can adopt transient positions where
K"K

���
, P"0 and where K"0, P"P

���
. Then, using the conservation principle,

K
���

"P
���

, K
���

and P
���

are calculated by the well-known formulae as stated in
reference [20].



Figure 2. E!ect of the crack modelled by (a) by rectangle; (b) triangle; (c) ellipse; (d) by the function
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By decomposing function (3) in a Fourier's series
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The coe$cients of the decomposition appear as:
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�
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Let one consider the diagnostic functions:
(1) The ratio of amplitudes in di!erent parts of a vibration cycle;
(2) The ratio of frequencies in di!erent parts of a vibration cycle;
(3) The function comparing the ratio of the kth harmonic amplitude appearing in case of

a crack to the amplitude of the "rst harmonic, i.e.,
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Values of these three diagnostic functions are obtained for function (3). The models of the
shell vibrations with dispersed and local transverse cracks are constructed. The models of
the shell vibrations with dispersed and single transverse cracks can be used for the diagnosis
of the degree of "ssuring in rocks. The shell modes is shown schematically in Figure 3. The
damages to the shell penetrates as far as �

�
h
�
and coincides with shell length l. The distance

between cracks is assumed to be smaller than �/2.
The ratio of vibration frequencies in case of the shell with dispersed cracks is obtained by

means of Relay's energy method and has the form
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Figure 3. The scheme of a part of the shell surface with dispersed cracks.
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The ratio of amplitudes has the similar form. In Figures 4 and 5 the graphs of diagnostic
functions are shown.
The ratios of vibration frequencies and amplitudes for the single crack whose e!ect is

modelled by the rectangle is obtained by means of Relay's energy method and are
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where for brevity,
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The formulae for other models of the in#uence of cracks have cumbersome form and they
are derived in this paper. The values of the diagnostic functions for a single crack are
illustrated by the graphs (Figures 6}8).
Figures 5 and 8 show that the most informative function amongst those considered is that

of d
�
. Thus, the appearance of the second harmonic enables one to diagnose the geometrical

parameters of the crack.
The experimental approaches to the determination of the values of the diagnostic

function (6) for a cantilever bar are o!ered in paper [16]. Paper [17] outlines the
experimental method of "nding the vibration parameter, the value of which describes with
the relationship of the frequencies.
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4. CONCLUSIONS

The values of bending vibration parameters of circular cylindrical shell have been found:
the frequencies and amplitudes of vibration of the shell without cracks; the shell vibration
frequencies with a transverse crack, and the frequencies of shell vibration with a closing
transverse crack which can be used when constructing the diagnostic functions of crack
detection. The graphs of the diagnostic functions have been presented for the ratio of
amplitudes in di!erent parts of a vibration cycle; the ratio of frequencies in di!erent parts of
a shell vibration cycle; the function describing the ratio of the k�� harmonic amplitude to
that of the "rst harmonic in the presence of a crack.
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